Copied to
clipboard

G = C42⋊C12order 192 = 26·3

1st semidirect product of C42 and C12 acting via C12/C2=C6

metabelian, soluble, monomial

Aliases: C421C12, C425C4⋊C3, C42⋊C32C4, C22.3(C4×A4), (C2×C42).1C6, (C22×C4).1A4, C23.12(C2×A4), C2.1(C42⋊C6), (C2×C42⋊C3).1C2, SmallGroup(192,192)

Series: Derived Chief Lower central Upper central

C1C42 — C42⋊C12
C1C22C42C2×C42C2×C42⋊C3 — C42⋊C12
C42 — C42⋊C12
C1C2

Generators and relations for C42⋊C12
 G = < a,b,c | a4=b4=c12=1, ab=ba, cac-1=a-1b-1, cbc-1=a-1 >

3C2
3C2
16C3
3C22
3C22
4C4
6C4
6C4
12C4
16C6
3C2×C4
3C2×C4
6C2×C4
6C2×C4
6C2×C4
6C2×C4
6C2×C4
6C2×C4
4A4
16C12
3C22×C4
3C42
3C22×C4
4C2×A4
3C2.C42
3C2.C42
4C4×A4

Character table of C42⋊C12

 class 12A2B2C3A3B4A4B4C4D4E4F4G4H6A6B12A12B12C12D
 size 113316164466661212161616161616
ρ111111111111111111111    trivial
ρ2111111-1-11111-1-111-1-1-1-1    linear of order 2
ρ31111ζ3ζ32-1-11111-1-1ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ41111ζ3ζ3211111111ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ51111ζ32ζ3-1-11111-1-1ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ61111ζ32ζ311111111ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ71-11-111-ii-11-11i-i-1-1-i-iii    linear of order 4
ρ81-11-111i-i-11-11-ii-1-1ii-i-i    linear of order 4
ρ91-11-1ζ32ζ3-ii-11-11i-iζ65ζ6ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3    linear of order 12
ρ101-11-1ζ3ζ32-ii-11-11i-iζ6ζ65ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32    linear of order 12
ρ111-11-1ζ32ζ3i-i-11-11-iiζ65ζ6ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3    linear of order 12
ρ121-11-1ζ3ζ32i-i-11-11-iiζ6ζ65ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32    linear of order 12
ρ1333330033-1-1-1-1-1-1000000    orthogonal lifted from A4
ρ14333300-3-3-1-1-1-111000000    orthogonal lifted from C2×A4
ρ153-33-3003i-3i1-11-1i-i000000    complex lifted from C4×A4
ρ163-33-300-3i3i1-11-1-ii000000    complex lifted from C4×A4
ρ1766-2-200002i-2i-2i2i00000000    complex lifted from C42⋊C6
ρ186-6-2200002i2i-2i-2i00000000    complex faithful
ρ196-6-220000-2i-2i2i2i00000000    complex faithful
ρ2066-2-20000-2i2i2i-2i00000000    complex lifted from C42⋊C6

Permutation representations of C42⋊C12
On 24 points - transitive group 24T299
Generators in S24
(1 4 7 10)(2 22 8 16)(3 14)(5 19 11 13)(6 23)(9 20)(12 17)(15 24 21 18)
(1 18)(2 11 8 5)(3 17 9 23)(4 15)(6 14 12 20)(7 24)(10 21)(13 16 19 22)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)

G:=sub<Sym(24)| (1,4,7,10)(2,22,8,16)(3,14)(5,19,11,13)(6,23)(9,20)(12,17)(15,24,21,18), (1,18)(2,11,8,5)(3,17,9,23)(4,15)(6,14,12,20)(7,24)(10,21)(13,16,19,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)>;

G:=Group( (1,4,7,10)(2,22,8,16)(3,14)(5,19,11,13)(6,23)(9,20)(12,17)(15,24,21,18), (1,18)(2,11,8,5)(3,17,9,23)(4,15)(6,14,12,20)(7,24)(10,21)(13,16,19,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24) );

G=PermutationGroup([[(1,4,7,10),(2,22,8,16),(3,14),(5,19,11,13),(6,23),(9,20),(12,17),(15,24,21,18)], [(1,18),(2,11,8,5),(3,17,9,23),(4,15),(6,14,12,20),(7,24),(10,21),(13,16,19,22)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)]])

G:=TransitiveGroup(24,299);

On 24 points - transitive group 24T305
Generators in S24
(1 10)(2 22 8 16)(3 14 9 20)(4 7)(5 13 11 19)(6 23 12 17)(15 24)(18 21)
(1 24 7 18)(2 11)(3 17 9 23)(4 21 10 15)(5 8)(6 20 12 14)(13 16)(19 22)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)

G:=sub<Sym(24)| (1,10)(2,22,8,16)(3,14,9,20)(4,7)(5,13,11,19)(6,23,12,17)(15,24)(18,21), (1,24,7,18)(2,11)(3,17,9,23)(4,21,10,15)(5,8)(6,20,12,14)(13,16)(19,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)>;

G:=Group( (1,10)(2,22,8,16)(3,14,9,20)(4,7)(5,13,11,19)(6,23,12,17)(15,24)(18,21), (1,24,7,18)(2,11)(3,17,9,23)(4,21,10,15)(5,8)(6,20,12,14)(13,16)(19,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24) );

G=PermutationGroup([[(1,10),(2,22,8,16),(3,14,9,20),(4,7),(5,13,11,19),(6,23,12,17),(15,24),(18,21)], [(1,24,7,18),(2,11),(3,17,9,23),(4,21,10,15),(5,8),(6,20,12,14),(13,16),(19,22)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)]])

G:=TransitiveGroup(24,305);

On 24 points - transitive group 24T308
Generators in S24
(2 13 8 19)(3 20 9 14)(4 10)(5 16 11 22)(6 17 12 23)(15 21)
(1 18 7 24)(3 20 9 14)(4 15 10 21)(5 11)(6 23 12 17)(16 22)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)

G:=sub<Sym(24)| (2,13,8,19)(3,20,9,14)(4,10)(5,16,11,22)(6,17,12,23)(15,21), (1,18,7,24)(3,20,9,14)(4,15,10,21)(5,11)(6,23,12,17)(16,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)>;

G:=Group( (2,13,8,19)(3,20,9,14)(4,10)(5,16,11,22)(6,17,12,23)(15,21), (1,18,7,24)(3,20,9,14)(4,15,10,21)(5,11)(6,23,12,17)(16,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24) );

G=PermutationGroup([[(2,13,8,19),(3,20,9,14),(4,10),(5,16,11,22),(6,17,12,23),(15,21)], [(1,18,7,24),(3,20,9,14),(4,15,10,21),(5,11),(6,23,12,17),(16,22)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)]])

G:=TransitiveGroup(24,308);

Matrix representation of C42⋊C12 in GL6(𝔽13)

080000
500000
000100
0012000
000080
000008
,
010000
1200000
005000
000500
000005
000080
,
000500
005000
000005
000050
050000
500000

G:=sub<GL(6,GF(13))| [0,5,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,8,0,0,0,0,5,0],[0,0,0,0,0,5,0,0,0,0,5,0,0,5,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,5,0,0,0] >;

C42⋊C12 in GAP, Magma, Sage, TeX

C_4^2\rtimes C_{12}
% in TeX

G:=Group("C4^2:C12");
// GroupNames label

G:=SmallGroup(192,192);
// by ID

G=gap.SmallGroup(192,192);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,2,-2,2,42,1683,346,360,4204,2321,102,2028,3541]);
// Polycyclic

G:=Group<a,b,c|a^4=b^4=c^12=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C42⋊C12 in TeX
Character table of C42⋊C12 in TeX

׿
×
𝔽